top of page
Faded Shapes

Publications

click for full publication list: Google Scholar
† equal contribution        * corresponding author

10.   Redox-tunable isoindigos for electrochemically mediated carbon capture. 

         X. Li, X. Zhao, L. Zhang, A. Mathur, Y. Xu, Z. Fang, L. Gu, Y. Liu, Y. Liu*, Nature Communications, 2024, 15, 1175[link]

9.    Electrifying carbon capture by developing nanomaterials at the interface of molecular and process Engineering

X. Li, A. Mathur, A. Liu, Y. Liu*, Accounts of Chemical Research, 2023, 56, 2763–2775. [link]

8.    Electrochemical cation-swing for carbon capture under ambient conditions [First Reactions]

Y. Liu*, ACS Central Science, 2023 [link]

7.    Assessing the kinetics of quinone-CO2 adduct formation for electrochemically mediated carbon capture

       Y. Xu, M. Zheng, C. B. Musgrave III, L. Zhang, W. A. Goddard III, B. C. Bukowski, Y. Liu*, 

       ACS Sustainable Chemistry & Engineering, 2023, 11, 11333–11341. [link]

6.    Electrochemically responsive materials for energy-efficient water treatment and carbon capture

       K. Shen†, A. Mathur†, Y. Liu*, X. Mao*, Applied Physics Review, 2023, 10, 031305. [link]

5.    Redox-tunable Lewis bases for electrochemical carbon dioxide capture

       X. Li, X. Zhao, Y. Liu*, T. A. Hatton*, Y. Liu*, Nature Energy, 2022, 7, 1065–1075. [link]

4.    Challenges and opportunities in continuous flow processes for electrochemically mediated carbon capture

       Y. Liu*, É. Lucas, I. Sullivan, X. Li, C. Xiang, iScience, 2022, 25, 105153. [link]

3.    Electrochemical methods for carbon dioxide separations

       K. M. Diederichsen, R. Sharifian, J. S. Kang, Y. Liu, S. Kim, B. M. Gallant, D. Vermaas, T. A. Hatton*, 

       Nature Reviews Methods Primers, 2022, 2, 68. [link]

​2.    Electrochemical and molecular assessment of quinones as CO2-binding redox molecules for carbon capture

​       F. Simeon, M. C. Stern, K. M. Diederichsen, Y. Liu, H. J. Herzog, T. A. Hatton*, 

       The Journal of Physical Chemistry C, 2022, 126, 1389–1399. [link] 

1.    Towards solvent-free continuous-flow electrochemically mediated carbon capture with high concentration

       liquid quinone chemistry

       Y. Liu*‡, K. M. Diederichsen‡, N. Ozbek, H. Seo, T. A. Hatton*, Joule, 2022, 6, 221239. [link] 

Publications After Joining JHU

Selected Publications Before Joining JHU

16.    Electrochemically mediated gating membrane with dynamically controllable gas transport

  Y. Liu, C.-M. Chow, K. R. Phillips, M. Wang, S. Voskian, T. A. Hatton*, Science Advances, 2020,  6, eabc1741 [link] [News

15.    Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media

  Y. Liu, H.-Z. Ye, K. M. Diederichsen, T. Van Voorhis, T. A. Hatton*, Nature Communications, 2020,  11, 2278 [link]   [Blog

14.    Challenges and opportunities towards fast-charging battery materials

  Y. Liu, Y. Zhu, Y. Cui*, Nature Energy, 2019,  4, 540–550 [link

13.    Fast galvanic lithium corrosion involving a Kirkendall-type mechanism

  D. Lin†, Y. Liu†, Y. Li, Y. Li, A. Pei, J. Xie, W. Huang, Y. Cui*, Nature Chemistry,  2019, 11, 382–389.    [link   [Blog

12.    Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode

  Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei, O. Nix, Y. Li, Y. Cui*, Nature Communications, 2018, 3656.  [link

11.     An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes

  Y. Liu†, Y.-K. Tzeng†, D. Lin, A. Pei, H. Lu, N. A. Melosh, Z.-X. Shen, S. Chu*, Y. Cui*, Joule, 2018, 2, 1595-1609. [link

  Highlighted by C&EN.

10.    Design of complex nanomaterials for energy storage: Past success and future opportunity

  Y. Liu, G. Zhou, K. Liu, Y. Cui*, Accounts of Chemical Research, 2017, 50, 2895-2905.  [link

9.      Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries

  Y. Liu, D. Lin, Y. Jin, K. Liu, X. Tao, Q. Zhang, X. Zhang, Y. Cui*, Science Advances, 2017, 3, eaao0713.  [link

8.      Reviving the lithium metal anode for high-energy batteries

  D. Lin†, Y. Liu†, Y. Cui*, Nature Nanotechnology, 2017, 12, 194-206.  [link

7.      A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction

         with enhanced active site accessibility

  Y. Liu, H. Wang, D. Lin, J. Zhao, C. Liu, J. Xie, Y. Cui*, Nano Research, 2017, 10, 1213-1222.  [link

6.      An artificial solid electrolyte interphase with high Li‐ion conductivity, mechanical strength, and flexibility

         for stable lithium metal anode 

  Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt, Y. Cui*, Advanced Materials, 2017, 29, 1605531.  [link

5.      Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes

  D. Lin†, Y. Liu†,  Z. Liang, H. W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui*,

  Nature Nanotechnology, 2016, 11, 626-632.  [link

4.      Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

  Y. Liu†, D. Lin†, Z. Liang, J. Zhao, K. Yan, Y. Cui*, Nature Communications, 2016, 7, 10992.  [link

3.      Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts

  Y. Liu,  H. Wang, D. Lin, C. Liu, P. C. Hsu, W. Liu, W. Chen, Y. Cui*,

  Energy & Environmental Science, 2015, 8, 1719-1724. [link]

2.      Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution

  X. Ge†, Y. Liu†, F. W. T. Goh, T. S. A. Hor*, Y. Zong, P. Xiao, Z. Zhang, S. H. Lim, B. Li,  X. Wang, Z. Liu*, 

  ACS Applied Materials & Interfaces, 2014, 15, 12684-12691.  [link]

1.      Designable yolk–shell nanoparticle@ MOF petalous heterostructures

  Y. Liu†, W. Zhang†, S. Li, C. Cui, J. Wu, H. Chen, F. Huo*, Chemistry of Materials, 201426, 1119-1125.  [link]

bottom of page